Microbiological Transformations. Part 5.1 Microbiological Transformations of 17a-Aza- and 17-Aza-D-homoandrost-5-ene Derivatives with the Fungus Cunninghamella elegans

\author{

Abstract

The products obtained from the incubation of 17 a -aza- and 17-aza-D-homoandrost-5-ene derivatives with Cunninghamella elegans are largely those resulting from allylic oxidation or epoxidation of the Δ^{5}-bond. The substrates are predominantly monohydroxylated whereas androst-5-ene derivatives under the same conditions show a tendency towards dihydroxylation.

}

In a previous paper ${ }^{2}$ in this series the transformation of Δ^{4} - and Δ^{5}-androstene derivatives by Cunninghamella elegans has been described. The work contained in the present paper is concerned with the microbiological transformation of 3β-acetoxy- and 3β-hydroxy-17a-aza-D-homoandrost-5-en-17-one (2) and (3), ${ }^{3,4} N$-acetyl-17a-aza-d-homoandrost-5-en-3 β-yl acetate (9), ${ }^{3} \mathrm{~N}$-acetyl-17-aza-d-homoandrost-5-en- 3β-yl acetate (22), ${ }^{3}$ and 17 a -aza-D-homoandrost-4-ene-3,17-dione (27) ${ }^{3}$ to assess the influence of an amide function in ring D on the course of microbiological transformation by the same fungus.

The results of the incubations carried out under comparable conditions to those employed for the androstene derivatives ${ }^{2}$ are summarised in Table 1 and structural assignments were made largely on the ${ }^{1} \mathrm{H}$ n.m.r. data summarised in Table 2.

The configuration of the epoxide (7) was confirmed by synthesis of the α - and β-epoxides of (3). Reaction between 3β-hydroxy-17a-aza-D-homoandrost-5-en-17one (3) and m-chloroperbenzoic acid gave a mixture of two compounds in the ratio of ca. 5:1 (by n.m.r.). Crystallisation gave the major product (31). N.m.r. analysis of the residue (from the mother-liquors) showed it to contain mainly the minor product which was
identical with the product (7) of incubation of (2). The chemical shifts of the two epoxides, together with the coupling constants of the C-6 protons, are given in Table 2. The major product of the reaction was assumed to be the $5 \alpha, 6 \alpha$-epoxide ${ }^{5-8}$ and since the incubation product was identical with the minor product, it was considered to be the $5 \beta, 6 \beta$-epoxide (7). This was confirmed by comparison of the n.m.r. chemical shifts and coupling constants of the epoxides (7) and (31) (Table 2) with reported values for steroidal epoxides. ${ }^{9-11}$

The assignments of the allylic alcohols (5) and (6) were confirmed by comparison of the $J_{6,75}$ values with those in $3 \beta, 7 \beta$-hydroxy- and $3 \beta, 7 \alpha$-hydroxycholestenes $\left(J_{6.75} 1.5\right.$ in $3 \beta, 7 \beta$-diol; $J_{6,7 \xi} 5.5$ in $3 \beta, 7 \alpha$-diol). ${ }^{11}$

The structure of the $3,6,17$-trione (29) was confirmed by sodium borohydride reduction to (32) and that of (30) by epoxidation of 17a-aza-D-homoandrost-4-ene-3,17dione (27) (Scheme), to give a mixture of $4 \xi, 5$-epoxy-17a-aza-d-homo- 5ξ-androstane-3,17-diones (33), (34); these were then separated, purified, and reduced to give easily identifiable mixtures. The ${ }^{1} \mathrm{H}$ n.m.r. data of these compounds (30), (35), (36), and (37) are summarised in Table 3. Comparison of the n.m.r. data with those (Table 2) for (30) confirms the assigned stereochemistry.

Table 1
Transformation of 17a-aza-d-homoandrostenes by Cunninghamella elegans

Aza-steroid	Products
3β-Acetoxy-17a-aza-d-homoandrost-5-en-17-one (2)	$3 \beta-\mathrm{OH}$ (3) 0.2%
	$3 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})$ (4) 1.7%
	$3 \beta, 7 \beta-(\mathrm{OH})_{2}(5) 6.7 \%$
	$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(6) 6.7 \%$
	$3 \beta-\mathrm{OH}, 5,6 \beta$-epoxy (7) 4.3\%
3β-Hydroxy-17a-aza-d-homoandrost-5-en-17-one (3)	$\begin{aligned} & 3 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(4) 1.6 \% \\ & 3 \beta, 7 \beta-(\mathrm{OH})_{2}(5) 5 \% \end{aligned}$
	$\begin{aligned} & 3 \beta, 7 \beta-(\mathrm{OH})_{2}(5) 5 \% \\ & 3 \beta, 7 \alpha-(\mathrm{OH})_{2}(6) 5 \% \end{aligned}$
	$3 \beta, \mathrm{OH}, 5,6 \beta$-epoxy (7) 2.4%
17α-Aza-d-homoandrost-5-en-3 - yl acetate (9)	$3 \beta, 7 \beta-(\mathrm{OH})_{2}(11) 0.5 \%$
	$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(12) 8.8 \%$
	$1 \beta, 3 \beta-(\mathrm{OH})_{2}(13) 4.5 \%$
	$1 \beta, 3 \beta, 7 \beta-(\mathrm{OH})_{3}(14) 0.6 \%$
	$1 \beta, 3 \beta$-(OH) 2 , 5,6 3 -ероху (19) 1.5%
N-Acetyl-17-aza-D-homoandrost-5-en-3 β-yl acetate (22)	$\begin{aligned} & 3 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(24) 4.3 \% \\ & 3 \beta, 7 \beta-(\mathrm{OH})_{2}(25) 10.3 \% \end{aligned}$
	$\begin{aligned} & 3 \beta, 7 \beta-(\mathrm{OH})_{2}(25) 10.3 \% \\ & 3 \beta, 7 \alpha-(\mathrm{OH})_{2}(26) 26.2 \% \end{aligned}$
17a-Aza-d-homoandrost-4-ene-3,17-dione (27)	
	$3,6-(\mathrm{C}=\mathrm{O})_{2}(29) 6.8 \%$
	$3 \alpha-\mathrm{OH}, 4 \alpha, 5 \alpha$-epoxy (30) 0.5%

Table 2
${ }^{1} \mathrm{H}$ N.m.r. spectra $\left(\mathrm{CDCl}_{3}\right)$ of 17a-aza- and 17-aza-D-homoandrostanes

Derivatives of (1)	Chemical shifts (δ)					$\Delta \delta$ Values ${ }^{\text {a }}$		Coupling constants (J / Hz) and half-widths ($W_{\frac{1}{2}} / \mathrm{Hz}$)	
	$3 \alpha-\mathrm{H}$	6-H	18-H	19-H	$\mathrm{C}_{x} \mathrm{HOH}$	18-H	19-H	6-H	$\mathrm{C}_{x} \mathrm{HOH}$
$3 \mathrm{B-OAc}$ (2)	4.60	5.40	1.17	1.00				$W_{\frac{1}{2}}=10$	
$3 \mathrm{\beta}-\mathrm{OH}$ (3)	3.54	5.36	1.17	1.00				$W_{\frac{1}{2}}=10$	
$3 \beta-\mathrm{OH}, 7-(\mathrm{C}=\mathrm{O})(4)$	3.68	5.73	1.19	1.22		0.02	$0.22{ }^{\text {b }}$	$J_{4.6 B}=-1.1$	
$3 \beta, 7 \beta-(\mathrm{OH})_{2}(5)$	3.57	5.29	1.19	1.04	3.94	0.02	$0.04{ }^{\text {b }}$	$\begin{aligned} & J_{6,7 \alpha}=2.5 \\ & J_{4 \beta, 6}=-2.5 \end{aligned}$	$J_{7 \alpha, 8 \beta}=6.8$
$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(6)$	3.59	5.63	1.17	0.98	4.04	0.00	-0.02^{6}	$\begin{aligned} & J_{6,7}=5.0 \\ & J_{4 \beta, 6}=-1.7 \end{aligned}$	$J_{6.7 \beta}=5.0$
$3 \beta-\mathrm{OH}, 5,6 \beta-\mathrm{epoxy}$ (7)	3.71	3.14	1.13	1.00		-0.04	$0.00{ }^{\text {b }}$		
3β-OH, Derivatives of (8 (3.92	2.95	1.11	1.05		-0.06	$0.05{ }^{\text {b }}$	$J_{6 \beta, 7 \beta}=4.5$	
$3 \beta-\mathrm{OAc}$ (9)	4.61	5.37	1.43	0.99				$W_{\frac{1}{2}}=10$	
$3 \beta-\mathrm{OH}$ (10)	3.52	5.35	1.44	0.97				$W_{\frac{1}{2}}^{2}=10$	
$3 \beta, 7 \beta-(\mathrm{OH})_{2}(11)$	3.55	5.27	1.46	1.02	3.89	0.02	0.05°	$W_{\frac{1}{2}}^{\frac{2}{2}}=7$	$W_{\frac{1}{2}}=13$
$3 \beta, 7 \alpha(\mathrm{OH})_{2}(12)$	3.57	5.61	1.45	0.97	3.98	0.01	0.00°	$J_{6.7 \%}=5.1$ $J_{48,6}=-1.5$	$W_{\frac{1}{2}}^{2}=12$
$1 \beta, 3 \beta-(\mathrm{OH})_{2}(13)$	3.50	5.54	1.44	1.01	3.60	0.00	$0.04{ }^{\text {c }}$	$J^{48.78}=5.5$	$J_{1 \alpha, 2 \alpha}=5.5$
$1 \beta, 3 \beta, 7 \beta-(\mathrm{OH})_{3}(14)$	3.76	5.41	1.46	1.04	3.59	0.02	$0.07{ }^{\text {c }}$	$J_{6,7 \alpha}=2.0$ $J_{4 \beta, 6}=-2.0$	$J_{11}{ }^{2} 2 \beta=8.5$ $J_{1 \alpha, 2 \alpha}=4.4$
					3.88				$W_{1}{ }_{\frac{1}{2}}=13$
$1 \beta, 3 \beta-(\mathrm{OH})_{2}, 5,6 \beta$-epoxy (19)	3.68	3.11	1.39	1.05	3.54	-0.05	$0.08{ }^{\text {c }}$	$J_{6 \alpha, 7 \beta}=2.8$	$\begin{aligned} & J_{1 \alpha, 2 \alpha}=12.0 \\ & J_{1 \alpha, 2 \alpha}=4.2 \end{aligned}$
$\begin{aligned} & 3 \beta, 7 \beta-(\mathrm{OAC})_{2}(15) \\ & 3 \beta, 7 \alpha-(\mathrm{OAc})_{2}(16) \end{aligned}$	$\begin{aligned} & 4.60 \\ & 4.67 \end{aligned}$	$\begin{aligned} & 5.23 \\ & 5.59 \end{aligned}$	$\begin{aligned} & 1.46 \\ & 1.42 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 5.09 \\ & 5.09 \end{aligned}$	0.03 -0.01			$W_{1}=12$
$1 \beta, 3 \beta-(\mathrm{OAc})_{2}(17)$	4.65	5.61	1.43	1.11	4.66	0.00	$0.12{ }^{\text {d }}$	$J_{6.7}{ }^{\text {P }}=5.0$	$J_{1 \alpha, 2} \beta=11.4$
			1.43	1.1	4.66	0.00	0.12		$J_{10.2 a}=4.2$
$1 \beta, 3 \beta, 7 \beta-(\mathrm{OAc})_{3}(18)$	4.67	5.39	1.46	1.16	4.65	0.03	$0.17{ }^{\text {d }}$	$W_{\frac{1}{2}}=6$	$\begin{aligned} & J_{1 a, 2} 2=11.1 \\ & J_{1,2 a}=3.8 \\ & W_{z}=12 \end{aligned}$
$1 \beta, 3 \beta-(\mathrm{OAc})_{2}, 5.6 \beta$-epoxy (20)	4.93	3.11	1.39	1.07	$\begin{aligned} & 5.07 \\ & 4.85 \end{aligned}$	0.04	$0.08{ }^{\text {d }}$	$J_{6 \alpha, 7}{ }^{6}=2.5$	$\begin{aligned} & J_{1 a, 2 \beta}=9.4 \\ & J_{1 a, 2 a}=3.3 \end{aligned}$
Derivatives of (21) $3 \beta-\mathrm{OAc}$ (22)	4.60	5.37	0.84	1.01				$W_{\frac{1}{2}}=10$	
$3 \beta-\mathrm{OH}$ (23)	3.53	5.35	0.85	1.00				$W_{\frac{1}{2}}=10$	
$3 \beta-\mathrm{OH}, 7(\mathrm{C}=\mathrm{O})(24)$	3.67	5.69	0.84	1.23		$-0.01{ }^{\text {e }}$	0.23	$W_{\frac{1}{2}}=3$	
$3 \beta, 7 \beta-(\mathrm{OH})_{2}(25)$	3.56	5.29	0.87	1.04	3.86	$0.02{ }^{\text {e }}$	0.04	$W_{\frac{1}{2}}=6$	$W_{\frac{1}{2}}=13$
$3 \beta, 7 \alpha-(\mathrm{OH})_{2}(26)$	3.59	5.61	0.85	0.99	3.96	$0.00{ }^{\text {e }}$	-0.01	$J_{6.7}{ }^{8}=5.0$	$W_{\frac{2}{2}}^{2}=14$
Derivatives of (27) (27)	$\begin{aligned} & 4-\mathrm{H} \\ & 5.75 \end{aligned}$			$\begin{gathered} 19-\mathrm{H} \\ 1.18 \end{gathered}$	$\mathrm{C}_{x} \mathrm{HOH}$	18-H	19-H	$\begin{gathered} 4-\mathrm{H} \\ W_{\frac{1}{2}}=3 \end{gathered}$	$\mathrm{C}_{x} \mathrm{HOH}$
11 α-OH (28)	5.75			1.32	3.90	0.01	$0.14{ }^{\text {f }}$	$W_{\frac{1}{2}}=3$	$\begin{aligned} J_{9} \alpha, 11 \beta & =10.5 \\ J_{11}, \beta_{12} \alpha & =10.5 \\ J_{11} \beta_{12} \beta & =4.0 \end{aligned}$
3,6-(C=O) ${ }_{2}(29)$				0.95		-0.01	$-0.23{ }^{f}$		
$3 \alpha-\mathrm{OH}, 4 \alpha, 5 \alpha$-epoxy (30)	3.24			1.02	4.05	-0.03	$-0.16{ }^{f}$	$J_{3 \beta, 4 \beta}=4.3$	$W_{\frac{1}{2}}=15$
- Minus sign ($\Delta \delta$) represe (23). $f \Delta \delta$ relative to (27).	ts an	field	${ }^{b} \Delta \delta$	relative	to (3). c	$\Delta \delta$ relati	ve to (10).	${ }^{d} \Delta \delta$ relative to). ${ }^{e} \Delta \delta$ relativ

Comparison of the results obtained on the microbiological transformations of the aza-steroidal systems (2), (3), (22), and (27) described in this paper with those reported ${ }^{2}$ for related Δ^{4} - and Δ^{5}-androstene derivatives shows predominant 7 -oxidation for both systems.

Unusually the N-acetyl-17a-azasteroid (9) underwent inter alia some 1β-hydroxylation to give (13) and some dioxygenation to give (14) and (19). Such 1-hydroxylation was not noted for the androstene derivative or for the N-acetyl-17-aza-analogue (22).

EXPERIMENTAL

General experimental details and incubation procedures are as given previously. ${ }^{2}$
3β-Acetoxy- and 3β-hydroxy-17a-aza-d-homoandrost-5-en-17-one (2) and (3), 3β-acetoxy- N-acetyl-17a-aza-D-homoandrost-5-ene (9), $\quad 3 \beta$-acetoxy- N-acetyl-17-aza-D-homoandrost-5-ene (22) and 17a-aza-d-homoandrost-4-ene-

3,17-dione (27) were prepared according to published procedures. ${ }^{3,4}$

Incubation of 3ß-Acetoxy-17a-aza-D-homoandrost-5-en-17one (2) ${ }^{3,4}$ with Cunninghamella elegans.-The lactam (2) $(8.0 \mathrm{~g})$, in ethanol $(800 \mathrm{ml})$, was added to the fungus in the nutrient medium ($80 \mathrm{l}, 400$ flasks), and incubated for three days. The broth extract (4.18 g) was chromatographed over alumina (Woelm, neutral, activity IV, 335 g).

Elution with ether-methanol ($99: 1$) yielded an oily fraction (1.265 g) which was crystallised, from methanol, to give $5,6 \beta$-epoxy- 3β-hydroxy-17a-aza-D-homo- 5β-androstan-17-one (7) (320 mg). Ether-methanol ($19: 1$) yielded a semi-solid fraction (1.425 g) which was crystallised, from ethyl acetate, to give a mixture of $3 \beta, 7 \beta$-dihydroxy-17a-aza-D-homoandrost-5-en-17-one (5) and $3 \beta, 7 \alpha$-dihydroxy$17 \mathrm{a}-\mathrm{aza}$-d-homoandrost-5-en-17-one (6) (741 mg), in approximately equal proportions. The combined mother-liquors were chromatographed (p.l.c.) and yielded, after extraction of the various fractions, 3β-hydroxy-17a-aza-D-homo-androst-5-en-17-one (3) (14 mg), 3β-hydroxy-17a-aza-d-

(1) $R^{1}=R^{2}=R^{3}=H$
(2) $R^{1}=O A c, R^{2}=R^{3}=H$
(3) $R^{1}=O H, R^{2}=R^{3}=H$
(4) $R^{1}=O H, R^{2} R^{3}=0$
(5) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$
(6) $R^{1}=O H \cdot R^{2}=H \cdot R^{3}=O H$

(7)

(8) $R^{1}=R^{2}=R^{3}=R^{4}=H$
(9) $R^{1}=O A C, R^{2}=R^{3}=R^{4}=H$
(10) $R^{1}=O H, R^{2}=R^{3}=R^{4}=H$
(11) $R^{1}=O H, R^{2}=O H, R^{3}=R^{4}=H$
(12) $R^{1}=O H, R^{2}=R^{4}=H, R^{3}=O H$
(13) $R^{1}=R^{4}=O H \cdot R^{2}=R^{3}=H$
(14) $R^{1}=R^{2}=R^{4}=O H, R^{3}=H$
(15) $R^{1}=R^{2}=O A c, R^{3}=R^{4}=H$
(16) $R^{1}=R^{3}=O A c, R^{2}=R^{4}=H$
(17) $R^{1}=R^{4}=O A c, R^{2}=R^{3}=H$
(18) $R^{1}=R^{2}=R^{4}=O A C, R^{3}=H$
homoandrost-5-ene-7,17-dione (4) (126 mg), and a further amount of (5) and (6) (248 mg ; total 989 mg) which was separated by p.l.c. over silica gel.
$3 \beta-H y d r o x y-17 a-a z a-d-h o m o a n d r o s t-5-e n-17$-one (3) was obtained as crystals ($14 \mathrm{mg}, 0.2 \%$) from ethyl acetate, m.p. $295-297{ }^{\circ} \mathrm{C}$ (lit., ${ }^{4} 292-295{ }^{\circ} \mathrm{C}$; lit., ${ }^{3} 295-297^{\circ}$), $M^{+}, 303$ $\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}\right), R_{\mathrm{F}}=0.35$.

3ß-Hydroxy-17a-aza-D-homoandrost-5-ene-7,17-dione (4) was obtained as crystals ($126 \mathrm{mg}, 1.7 \%$) from ethyl acetate, m.p. 303-305 ${ }^{\circ} \mathrm{C}$ (Found: C, $71.6 ; \mathrm{H}, 8.8$; N, 4.4. $\mathrm{C}_{19} \mathrm{H}_{27^{-}}$ NO_{3} requires $\mathrm{C}, 71.9 ; \mathrm{H}, 8.6 ; \mathrm{N}, 4.4 \%$), $\lambda_{\text {max. }} 238 \mathrm{~nm}(\varepsilon$ 10400); $M^{+}, 317 ; R_{\mathrm{F}}=0.24$.

5,6及-Eроxy-3-hydroxy-17a-aza-D-homo-5ß-androstan-17one (7) was obtained as crystals ($320 \mathrm{mg}, 4.3 \%$) from methanol, m.p. $247-252{ }^{\circ} \mathrm{C}$; recrystallisation from ethyl acetate raised the melting point to $262-265^{\circ} \mathrm{C}$ (Found: C,
71.7; H, 9.3; N, 4.1. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.2$; $\mathrm{N}, 4.4 \%) ; M^{+}, 319 ; R_{\mathrm{F}}=0.20$.
$3 \beta, 7 \beta$-Dihydroxy-17a-aza-D-homoandrost-5-en-17-one was obtained as crystals ($c a .450 \mathrm{mg}, c a .6 .7 \%$) from ethyl acetate, m.p. $257-260^{\circ} \mathrm{C}$ (Found: C, $71.6 ; \mathrm{H}, 9.2$; N, 4.5. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires C, $71.4 ; \mathrm{H}, 9.2 ; \mathrm{N}, 4.4 \%$). ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 3.88$ (sept. $\left.J 9.8,4.9 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}\right) 5.68$ (s, $W_{\frac{1}{2}}$ $5 \mathrm{~Hz}, 6-\mathrm{H}), 1.14\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right), 0.96\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right), 4.12\left(\mathrm{~m}, W_{\frac{1}{2}}\right.$ $16 \mathrm{~Hz}, 7 \alpha-\mathrm{C} H \mathrm{OH}) ; M^{+}, 319 ; R_{\mathrm{F}}=0.11$.
$3 \beta, 7 \alpha-$ Dihydroxy-17a-aza-d-homoandrost-5-en-17-one (6) was obtained as crystals ($c a .450 \mathrm{mg}, c a .6 .7 \%$) from ethyl acetate, m.p. $247-250^{\circ} \mathrm{C}$ (Found: C, $\mathbf{7 1 . 5}$; H, $9.4 ; \mathrm{N}, 4.3$. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires C, $71.4 ; \mathrm{H}, 9.2 ; \mathrm{N}, 4.4 \%$), ${ }^{1} \mathrm{H}$ n.m.r. $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right): \delta 3.80$ (sept. $\left.J 9.8,4.9 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}\right), 5.85$ (d, $J 4.8 \mathrm{~Hz}, 6-\mathrm{H}), 1.18\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right), 1.02\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right)$, and $4.25(\mathrm{~m}$, $\left.W_{\frac{1}{2}} 12 \mathrm{~Hz}, 7 \beta-\mathrm{CHOH}\right) ; M^{+}, 319 ; R_{\mathrm{F}}=0.06$.

Scheme Reagents: i, $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}-\mathrm{MeOH}$; ii, $\mathrm{NaBH}_{4}-\mathrm{MeOH}$; __ major product, - - minor product

Table 3
${ }^{1} \mathrm{H}$ N.m.r. spectra $\left(\mathrm{CDCl}_{3}\right)$ of 3-oxo- and 3ξ-hydroxy- $4 \xi, 5$-epoxy-17a-aza-d-homo- 5ξ-androstan-17-ones

Compound		$4 \xi, 5 \xi-$ epoxide	Chemical shifts (δ)				Coupling constants (J / Hz) and half-widths ($W_{\frac{1}{2}} / \mathrm{Hz}$)	
	C-3		$3 \xi-\mathrm{H}$	$4 \xi-\mathrm{H}$	18-H	19-H	3-H	$W_{\frac{1}{2}}$
(33)	keto	α		3.08	1.20	1.06		$W_{\frac{1}{2}}=2$
(34)	keto	β		3.02	1.19	1.16		$W_{\frac{1}{2}}=2$
(30)	α-OH	α	4.05	3.24	1.18	1.02	m	$J_{3} \beta_{4}{ }_{4} \beta=4.3$
(37)	$\beta-\mathrm{OH}$	α	4.00	2.96	1.18	1.10	$\begin{aligned} J_{3 \alpha, 4 \alpha} & =J_{3} \alpha, 4 \beta \\ & =8.4 \end{aligned}$	$W_{\frac{1}{\frac{1}{3}}}=3$
(35)	α-OH	β	3.99	2.88	1.18	0.99	$\begin{aligned} J_{3 \beta \cdot 4 \alpha} & =J_{3,}{ }^{\text {a }} \text {. } \beta\end{aligned}$	$W_{\frac{1}{1}}=3$
(36)	$\beta-\mathrm{OH}$	β	4.08	3.18	1.18	1.03	$W_{\frac{1}{2}}=15$	$J_{3 \alpha, 4}=4.5$

Incubation of 3ß-Hydroxy-17a-aza-D-homoandrost-5-en-17-one (3) with Cunninghamella elegans.-3 3 -Hydroxy-17a-aza-d-homoandrost-5-en-17-one (3) (2.5 g), in ethanol (250 ml), was added to the fungus in the nutrient medium (25 l , 125 flasks), and incubated for three days. P.l.c. of the broth extract (0.65 g), extraction, and crystallisation (ethyl acetate), yielded starting material (3) ($104 \mathrm{mg}, 4.2 \%$), 3β -hydroxy-17a-aza-d-homoandrost-5-ene-7,17-dione (4) (41 $\mathrm{mg}, \quad 1.6 \%$), $\quad 5,6 \beta$-epoxy- 3β-hydroxy-17a-aza-d-homo- $5 \beta-$ androstan-17-one (7) ($62 \mathrm{mg}, 2.4 \%$), and a mixture of $3 \beta, 7 \beta$ -dihydroxy-17a-aza-D-homoandrost-5-en-17-one (5) and $3 \beta, 7 \alpha$-dihdroxy-17a-aza-d-homoandrost-3-en-17-one (6) (263 $\mathrm{mg}, 10.0 \%)$.

5,6 α-Epoxy- and 5,6 3 -Epoxy-3ß-hydroxy-17a-aza-D-homo5α-androstan-17-one (31) and (7).-3 3 -Hydroxy-17a-aza-D-homoandrost-5-en-17-one (3) (2.0 g) was stirred, in chloroform $(250 \mathrm{ml})$, and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. This was treated with a solution of m-chloroperbenzoic acid (1.40 g , excess) in chloroform (40 ml), pre-cooled to the same tem-
perature. The mixture was allowed to warm to room temperature, with stirring. After 1.5 h , the reaction mixture was further diluted with chloroform (100 ml). Excess of m-chloroperbenzoic acid was destroyed by successive washing with sodium sulphite solution ($10 \% \mathrm{w} / \mathrm{v} ; 100 \mathrm{ml}$), saturated aqueous sodium hydrogencarbonate ($2 \times 50 \mathrm{ml}$), and water. The organic layer was dried (sodium sulphate) and the solvent removed, under reduced pressure. Analysis of the residue, by ${ }^{1} \mathrm{H}$ n.m.r., gave the epoxide ratio $(\alpha: \beta)$ as $c a .5: 1$, the α-isomer predominating. Fractional crystallisation from ethyl acetate yielded almost pure $5,6 \alpha$-epoxide. Recrystallisation from ethyl acetate yielded $5,6 \alpha$-epoxy-3 β -hydroxy-7a-aza-D-homo-5 α-androstan-17-one (31) as white crystals ($1.05 \mathrm{~g}, 50 \%$), m.p. $283-285{ }^{\circ} \mathrm{C}$ (Found: C, 71.2 $\mathrm{H}, 9.3 ; \mathrm{N}, 4.2 . \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires C, $71.4 ; \mathrm{H}, 9.2 ; \mathrm{N}$, 4.4%), $\delta\left(\mathrm{CDCl}_{3}\right) 3.92$ (sept, J 10.8, $5.4 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}$), $2.95(\mathrm{~d}, J 4.5 \mathrm{~Hz}, 6 \beta-H), 1.11\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right)$, and $1.05\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right)$; $M^{+}, 319 ; R_{\mathrm{F}}=0.19$.

Evaporation of the mother-liquors, from the fractional
crystallisation, gave a mixture of the two epoxides, the 5,6 $6-$ epoxy- 3β-hydroxy-17a-aza-d-homo- 5α-androstan-17-one predominating.
$3 \beta, 7 \alpha$-Diacetoxy-17a-aza-D-homoandrost-5-en-17-one.-
3β-Acetoxy-17a-aza-d-homoandrost-5-en-17-one (2) (3.0 g) and cuprous bromide (3.0 g) were refluxed in acetic acid (50 ml), in an atmosphere of nitrogen, whilst t-butyl perbenzoate (7.5 ml) in acetic acid (30 ml) was added over a period of 15 min . The mixture was refluxed for a further 15 min and then cooled and poured into chloroform (300 ml). The mixture was then filtered and washed successively with water ($3 \times 50 \mathrm{ml}$), aqueous sodium carbonate ($5 \% \mathrm{w} / \mathrm{v}$; $3 \times 100 \mathrm{ml})$, and water $(2 \times 50 \mathrm{ml})$ and then dried $\left(\mathrm{Na}_{2}-\right.$ $\left.\mathrm{SO}_{4}\right)$. Removal of the solvent left a very viscous oil (4.0 g), to which was added ethyl acetate (5 ml). The solution was allowed to stand overnight at room temperature. The precipitate was filtered off and crystallised from ethyl acetate to give the expected ${ }^{12} 3 \beta, 7 \alpha$-diacetoxy-17a-aza-D-homoandrost-5-en-17-one ($0.43 \mathrm{~g}, 12 \%$), m.p. $211-212{ }^{\circ} \mathrm{C}$ (Found: C, 68.6; H, 8.1; N, 3.7. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5}$ requires C, 68.5; H, 8.2; N, 3.5\%), ${ }^{1} \mathrm{H}$ n.m.r.: $\delta 4.68$ (sept, $J 10.4,5.2 \mathrm{~Hz}$, $3 \alpha-\mathrm{CHOAc}), 5.60(\mathrm{~d}, J 5.0 \mathrm{~Hz}, 6-\mathrm{H}), 1.17\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right), 1.01$ $\left(\mathrm{s}, 19-\mathrm{H}_{3}\right), 5.17\left(\mathrm{~m}, W_{\frac{1}{2}} 11 \mathrm{~Hz}, 7 \beta-\mathrm{CHOAc}\right), 2.04(\mathrm{~s}, 3 \beta-$ OCOCH_{3}), and $2.06\left(\mathrm{~s}, 7 \alpha-\mathrm{OCOCH}_{3}\right) ; M^{+}, 403$.
$3 \beta, 7 \alpha$-Dihydroxy-17a-aza-D-homoandrost-5-en-17-one (6).$3 \beta, 7 \alpha$-Diacetoxy-17a-aza-d-homoandrost- 5 -en-17-one (0.35 g) and potassium hydroxide (0.10 g) were refluxed in methanol (10 ml) for 2 h . After neutralisation (acetic acid) the mixture was poured into water (50 ml) and extracted with chloroform ($3 \times 25 \mathrm{ml}$). Removal of the solvent and crystallisation from ethyl acetate gave the desired product ($0.14 \mathrm{~g}, 51 \%$), m.p. $235-238{ }^{\circ} \mathrm{C}, R_{\mathrm{F}}=0.06$. Recrystallisation of a small sample from ethanol gave white crystals, m.p. $248-251{ }^{\circ} \mathrm{C}$.

Incubation of N -Acetyl-17a-aza-D-homoandrost-5-en-3ß-yl Acetate (9) with Cunninghamella elegans.- N-Acetyl-17a-aza-D-homoandrost-5-en- 3β-yl acetate (9) (3.0 g), in ethanol $(300 \mathrm{ml})$, was added to the fungus, in the nutrient medium (301,150 flasks), and incubated for 3 d . The broth extract $(1.75 \mathrm{~g})$ was chromatographed over alumina (Woelm, neutral, activity II, 200 g), with ether-methanol ($99: 1$) as eluant, to give the following hydroxylated derivatives: (i) N -acetyl-17a-aza-D-homoandrost-5-ene- $3 \beta, 7 \beta$-diol (11) as needles ($14 \mathrm{mg}, 0.5 \%$) from ethyl acetate, m.p. $272-274{ }^{\circ} \mathrm{C}$ (Found: C, 72.8; H, 9.7; N, 3.9. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires C, $72.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 4.0 \%) ; M^{+}, 347 ; R_{\mathrm{F}}=0.45$. Acetylation yielded N-acetyl-17a-aza-d-homoandrost- 5 -en- $3 \beta, 7 \beta$ diyl diacetate (15) (${ }^{1} \mathrm{H}$ n.m.r. Table 2); (ii) N -acetyl-17a-aza-D-homoandrost-5-ene-3 3.7α-diol (12) as needles ($245 \mathrm{mg}, 8.8 \%$) from methanol, m.p. $316-318{ }^{\circ} \mathrm{C}$ (Found: C, $72.6 ; \mathrm{H}, 9.8$; $\mathrm{N}, 4.2 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 72.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 4.0 \%\right) ; M^{+}$, 347; $\quad R_{\mathrm{F}}=0.34$. Acetylation yielded N-acetyl-17a-aza-D-homoandrost-5-ene- $3 \beta, 7 \alpha$-diyl diacetate (16) (${ }^{1} \mathrm{H}$ n.m.r. Table 2); (iii) N -acetyl-17a-aza-D-homoandrost-5-ene-1 $\beta, 3 \beta$ diol (13) as crystals ($125 \mathrm{mg}, 4.5 \%$) from methanol, m.p. $321-323{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 9.4 ; \mathrm{N}, 4.3 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires C, $72.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 4.0 \%) ; M^{+}, 347 ; R_{\mathrm{F}}=0.24$. Acetylation yielded N-acetyl-17a-aza-D-homoandrost-5-ene$1 \beta-3 \beta$-diyl diacetate (17) (${ }^{1} \mathrm{H}$ n.m.r. Table 2); (iv) N -acetyl-5,6及-epoxy-17a-aza-D-homo-5 5 -androstane-1 $\beta, 3 \beta$-diol (19) as crystals ($43 \mathrm{mg}, 1.5 \%$) from methanol, m.p. $258-261^{\circ}$ (Found: C, $69.5 ; \mathrm{H}, 9.3 ; \mathrm{N}, 3.7 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires C, $69.4 ; \mathrm{H}, 9.2 ; \mathrm{N}, 3.9 \%$) ; $M^{+}, 363 ; R_{\mathrm{F}}=0.20$. Acetylation yielded N-acetyl- $5,6 \beta$-epoxy-17a-aza-D-homo- 5β -androstane- $1 \beta, 3 \beta$-diyl diacetate (20) (${ }^{1} \mathrm{H}$ n.m.r. Table 2);
(v) N -acetyl-17a-aza-D-homoandrost-5-ene-1 $\beta, 3 \beta, 7 \beta$-triol (14) as crystals ($18 \mathrm{mg}, 0.6 \%$) from methanol, m.p. 278 $280{ }^{\circ} \mathrm{C}$ (Found: C, 69.2; H, 9.2; N, 4.0. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires C, $69.4 ; \mathrm{H}, 9.2 ; \mathrm{N}, 3.9 \%) ; M^{+}, 363 ; R_{\mathrm{F}}=0.16$. Acetylation yielded N-acetyl-17a-aza-d-homoandrost-5-ene$1 \beta, 3 \beta, 7 \beta$-triyl triacetate (18) (${ }^{1} \mathrm{H}$ n.m.r. Table 2).

Incubation of N -Acetyl-17-aza-D-homoandrost-5-en-3ß-yl Acetate (22) with Cunninghamella elegans.- N-Acetyl-17-aza-D-homoandrost-5-en-3 3 -yl acetate (22) (0.50 g), in ethanol (50 ml), was incubated with the fungus in the nutrient medium (5 l, 25 flasks), for 3 d .

The broth extract (0.35 g) was chromatographed over alumina (Woelm, neutral, activity II; 50 g). Elution with ether-methanol ($99: 1$) yielded, in order of decreasing R_{F} value, N -acetyl-3 β-hydroxy-17-aza-D-homoandrost-5-en-7-one (24) as crystals ($20 \mathrm{mg}, 4.3 \%$) from ethyl acetate, m.p. $240-243{ }^{\circ} \mathrm{C}$ (Found: C, $72.8 ; \mathrm{H}, 8.9 ; \mathrm{N}, 4.3 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73.0 ; \mathrm{H}, 9.0 ; \mathrm{N}, 4.1 \%$) ; $\delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 3.87$ (sept, $J 10.0,5.0 \mathrm{~Hz}, 3 \alpha-\mathrm{C} H \mathrm{OH}), 5.87(6-H), 0.83\left(18-\mathrm{H}_{3}\right), 1.10$ $\left(\mathrm{s}, 19-\mathrm{H}_{3}\right)$, and $2.10\left(17-\mathrm{NCOCH}_{3}\right)$; $\lambda_{\max .} 237 \mathrm{~nm}(\varepsilon=$ $13600) ; \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610$ and $1670 \mathrm{~cm}^{-1} ; M^{+}, 345 ; R_{\mathrm{F}}=$ 0.52 ; N -acetyl-17-aza-D-homoandrost- 5 -ene- $3 \beta, 7 \beta$-diol (25) as crystals ($48 \mathrm{mg}, 10.3 \%$) from ethyl acetate, m.p. $247-$ $249{ }^{\circ} \mathrm{C}$ (Found: C, 72.7; H, 9.4; N, 4.2. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{8}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 4.0 \%) ; \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 3.88(\mathrm{~m}$, $\left.W_{\frac{1}{2}} 23 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}\right), 5.70(6-\mathrm{H}), 0.89\left(18-\mathrm{H}_{3}\right), 0.95$ (s, 19- H_{3}), $2.11\left(17-\mathrm{NCOCH}_{3}\right)$, and 4.07 (t, $J 7.0 \mathrm{~Hz}, 7 \alpha-$ $\mathrm{CHOH}) ; \quad M^{+}, 347 ; R_{\mathrm{F}}=0.35 ; \mathrm{N}$-acetyl-17-aza-D-homo-androst-5-ene- $3 \beta, 7 \alpha$-diol (26) as crystals ($122 \mathrm{mg}, 26.2 \%$) from ethyl acetate, m.p. 217-220 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.4; H, $9.6 ; \mathrm{N}, 4.3 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{3}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 9.6 ; \mathrm{N}, 4.0 \%$); $\delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 3.80\left(\mathrm{~m}, W_{\frac{1}{2}} 23 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}\right), 5.88$ ($\left.6-\mathrm{H}\right)$, $0.89\left(18-\mathrm{H}_{3}\right), 1.00\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right), 2.11\left(17-\mathrm{NCOCH}_{3}\right)$, and 4.17 (m, $\left.W_{\frac{1}{2}} 20 \mathrm{~Hz}, 7 \beta-\mathrm{CHOH}\right), M^{+}, 347 ; R_{\mathrm{F}}=0.28$.

Incubation of 17a-aza-D-homoandrost-4-ene-3,17-dione (27) with Cunninghamella elegans.-17a-Aza-D-homoandrost-4-ene-3,17-dione (27) (4.0 g) in ethanol (400 ml) was added to the fungus in the nutrient medium ($40 \mathrm{l}, 200$ flasks) -no precipitate observed-and incubated for 3 d . The broth extract (5.23 g) was chromatographed over alumina (Woelm, neutral, activity III, 530 g). Elution with ether--methanol ($49: 1$) yielded, in decreasing order of R_{F} value, unchanged starting material ($1.68 \mathrm{~g}, 42 \%$), $R_{\mathrm{F}}=0.31$; 17a-aza-D-homo- 5α-androstane-3,6,17-trione (29) as crystals (286 mg , 6.8%) from methanol, m.p. $317-319^{\circ} \mathrm{C}$ (Found: C, 71.7 ; $\mathrm{H}, 8.8$; $\mathrm{N}, 4.6 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.9 ; \mathrm{H}, 8.6 ; \mathrm{N}$, $4.6 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right): 3390,1720$, and $1712 \mathrm{~cm}^{-1} ; M^{+}$, 317; $R_{\mathrm{F}}=0.24 ; 4 \alpha, 5$-epoxy- 3α-hydroxy-17a-aza-D-homo5α-androstan-17-one (30) as crystals ($22 \mathrm{mg}, 0.5 \%$) from methanol, m.p. 206-209 ${ }^{\circ} \mathrm{C}$ (Found: C, $71.2 ; \mathrm{H}, 9.4$; N, 4.0. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.2 ; \mathrm{N}, 4.4 \%$) ; M^{+}, $319 ; \quad R_{\mathrm{F}}=0.12 ; \quad 11 \alpha$-hydroxy-17a-aza-D-homoandrost-4-ene-3,17-dione (28) as crystals ($19 \mathrm{mg}, 0.5 \%$) from methanol, m.p. $190-193{ }^{\circ} \mathrm{C}$ (Found: C, 72.1; H, 8.8; N, 4.3. $\mathrm{C}_{19}{ }^{-}$ $\mathrm{H}_{27} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.9 ; \mathrm{H}, 8.6 ; \mathrm{N}, 4.4 \%$), $\lambda_{\text {max. }} 239 \mathrm{~nm}$ $(\varepsilon 13700)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3610,3390$, and $1650 \mathrm{~cm}^{-1} ; M^{+}$, 317; $R_{\mathrm{F}}=0.07$.
$3 \beta, 6 \beta$-Dihydroxy-17a-aza-D-homo-5 α-androstan-17-one (32).-17a-Aza-d-homo-5 α-androstane-3,6,17-trione (29) (20 mg) was reduced with sodium borohydride (20 mg) in methanol $(2 \mathrm{ml})$. After 1 h , at room temperature, the solvent was evaporated (nitrogen), the residue being washed well (water) and dried (in vacuo). Crystallisation from ethyl acetate yielded $3 \beta, 6 \beta$-dihydroxy-17a-aza-D-homo- 5α-andro-stan-17-one (32) ($10 \mathrm{mg}, 50 \%$), m.p. $310-312{ }^{\circ} \mathrm{C}$ (Found:

C, $75.3 ; \mathrm{H}, 9.5 ; \mathrm{N}, 4.4 . \quad \mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $\mathrm{C}, 75.2 ; \mathrm{H}$, 9.6 ; $\mathrm{N}, 4.6 \%$); ${ }^{1} \mathrm{H}$ n.m.r.: $\delta 3.69$ (sept, $J 10.0,5.0 \mathrm{~Hz}, 3 \alpha-$ $\mathrm{C} H \mathrm{OH}), 1.20\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right), 1.04\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right)$, and $3.89\left(\mathrm{~m}, W_{\frac{1}{8}}\right.$ $8 \mathrm{~Hz}, 6 \alpha-\mathrm{CHOH}) ; M^{+}, 321$.

4乡,5-Epoxy-17a-aza-D-homo-5 ξ-androstane-17-diones (33)
and (34).-17a-Aza-d-homoandrost-4-ene-3,17-dione (27) $(1.0 \mathrm{~g})$ was dissolved in methanol (100 ml) and cooled to $6^{\circ} \mathrm{C}$. Hydrogen peroxide ($100 \mathrm{vol} ; 6.8 \mathrm{ml}$) was also cooled and added. This was followed by a cooled aqueous solution of sodium hydroxide ($4 \mathrm{~N} ; 4.5 \mathrm{ml}$). After 3 h , the methanol was removed (in vacuo, with gentle warming) and the residue was dissolved in ethyl acetate, filtered, washed (water, 50 ml), and dried (sodium sulphate). Removal of the solvent left a residue (0.72 g) which was purified by p.l.c. to give $4 \alpha, 5$-epoxy-17a-aza-d-homo-5 α-androstane-3,17-dione (33) as crystals ($12 \mathrm{mg}, 1 \%$) from ethyl acetate, m.p. $258-260^{\circ} \mathrm{C}$ (Found: C, 72.1; H, 8.4; N, 4.6. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires C, $71.9 ; \mathrm{H}, 8.6 ; \mathrm{N}, 4.4 \%) ; \delta 3.08\left(\mathrm{~s}, W_{\frac{1}{2}} 2 \mathrm{~Hz}, 4 \beta-\mathrm{H}\right), 1.20$ $\left(\mathrm{s}, 18-\mathrm{H}_{3}\right)$, and $1.06\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right) ; R_{\mathrm{F}}=0.38$; and $4 \beta, 5-$ epoxy-17a-aza-D-homo-5 β-androstane-3,17-dione (34) as crystals ($116 \mathrm{mg}, 11 \%$) from ethyl acetate, m.p. $264-266{ }^{\circ} \mathrm{C}$ (Found: C, 71.7; H, 8.5; N, 4.3. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires C , $71.9 ; \mathrm{H}, 8.6 ; \mathrm{N}, 4.4 \%) ; \delta 3.02$ (s, $W_{\frac{1}{2}} 2 \mathrm{~Hz}, 4 \alpha-\mathrm{H}$), 1.19 (s, $18-\mathrm{H}_{3}$) and $1.15\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right) ; R_{\mathrm{F}}=0.32$.

4 $\alpha, 5-$ Epoxy- $3 \xi-$ hydroxy-17a-aza-d-homo-5 α-androstan-17-
ones (30) and (37).-4 4,5 -Epoxy-17a-aza-d-homo- 5α-andro-stane-3,17-dione (33) (8 mg) was dissolved in methanol (0.5 ml) and reduced with sodium borohydride (10 mg), at room temperature, for 1 h . Evaporation of the solvent (nitrogen) left a residue which was washed well (water) and dried (in vacuo at $60^{\circ} \mathrm{C}$). Separation of the products was not attempted. ${ }^{1} \mathrm{H}$ N.m.r. analysis of the product mixture gave $\delta 4.05(\mathrm{~m}, 3 \beta-\mathrm{CHOH}), 3.24(\mathrm{~d}, J 4.3 \mathrm{~Hz}, 4 \beta-H), 1.18$ (s, $18-\mathrm{H}_{3}$), and $1.02\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right)$, attributed to $4 \alpha, 5$-ероху- $3 \alpha-$ hydroxy-17a-aza-D-homo- 5α-androstan-17-one (30); and δ $4.00(\mathrm{t}, J 8.4 \mathrm{~Hz}, 3 \alpha-\mathrm{CHOH}), 2.96\left(\mathrm{~s}, W_{\frac{1}{2}} 3 \mathrm{~Hz}, 4 \beta-\mathrm{H}\right), 1.18$ (s, $18-\mathrm{H}_{3}$), and $1.10\left(\mathrm{~s}, 19-\mathrm{H}_{3}\right)$, attributed to $4 \alpha, 5$-epoxy- 3β -
hydroxy-17a-aza-D-homo-5 α-androstan-17-one (37). The ratio ($3 \beta: 3 \alpha$) of the two isomers was $c a .5: 1$.

4ß,5-Epoxy-3द-hydroxy-17a-aza-d-homo-5 β-androstan-17ones (35) and (36).-4 4,5 -Epoxy-17a-aza-d-homo- 5β-andro-stane-3,17-dione (34) (30 mg) was dissolved in methanol $(2 \mathrm{ml})$. Sodium borohydride (20 mg) was added and the reaction was treated as above. ${ }^{1} \mathrm{H}$ N.m.r. analysis of the unseparated product mixture gave $\delta 3.99$ (t, J 7.9 Hz , $3 \beta-\mathrm{CHOH}), 2.88\left(\mathrm{~s}, W_{\frac{1}{2}} 3 \mathrm{~Hz}, 4 \alpha-\mathrm{H}\right), 1.18\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right)$, and 0.99 (s, 19- H_{3}), attributed to $4 \beta, 5$-epoxy- 3α-hydroxy-17a-aza-d-homo- 5β-androstan-17-one (35) and $\delta 4.08\left(\mathrm{~m}, W_{\frac{1}{2}} 15 \mathrm{~Hz}\right.$, $3 \alpha-\mathrm{CHOH}), 3.18(\mathrm{~d}, J 4.5 \mathrm{~Hz}, 4 \alpha-\mathrm{H}), 1.18\left(\mathrm{~s}, 18-\mathrm{H}_{3}\right), 1.03$ (s, 19- H_{3}), attributed to $4 \beta, 5$-epoxy- 3β-hydroxy-17a-aza-D-homo- 5β-androstan-17-one (36). The ratio ($3 \beta: 3 \alpha$) of the two isomers was $c a .11: 9$.
[1/1093 Received, 13th July, 1981]

REFERENCES

${ }^{1}$ Part 4, T. A. Crabb, J. A. Saul, and R. O. Williams, J. Chem. Soc., Perkin Trans. 1, $1981,1041$.
${ }^{2}$ T. A. Crabb, P. J. Dawson, and R. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1981, 2535.
${ }^{3}$ B. M. Regan and F. N. Hayes, J. Am. Chem. Soc., 1956, 78, 639.
${ }_{4}^{4}$ S. Kaufmann, J. Am. Chem. Soc., 1951, 73, 1779.
${ }^{5}$ R. Littell and S. Bernstein, J. Am. Chem. Soc., 1956, 78. 984.
${ }_{6}$ J. A. Edwards, H. J. Ringold, and C. Djerassi, J. Am. Chem. Soc., 1960, 82, 2318.
${ }^{7}$ H. J. Ringold, E. Batres, and G. Rosenkranz, J. Org. Chem., 1957, 22, 99.
${ }_{8}$ R. Villotti, C. Djerassi, and H. J. Ringold, J. Am. Chem. Soc., 1959, 81, 4566.
${ }^{\circ}$ K. Tori, T. Komeno, and T. Nakagawa, J. Ovg. Chem., 1964, 29, 1136.
${ }_{10}$ A. D. Cross, J. Am. Chem. Soc., 1962, 84, 3206.
${ }^{11}$ C. W. Shoppee and B. C. Newman, J. Chem. Soc. C, 1968, 981.
${ }^{12}$ L. Starka, Collect. Czech. Chem. Commun., 1961, 26, 2452.

